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Splicing Defects in the COL3A1 Gene: Marked Preference for 5′ (Donor)
Splice-Site Mutations in Patients with Exon-Skipping Mutations
and Ehlers-Danlos Syndrome Type IV
Ulrike Schwarze, Jayne A. Goldstein, and Peter H. Byers
Departments of Pathology and Medicine, University of Washington, Seattle

Summary

Ehlers-Danlos syndrome (EDS) type IV results from mu-
tations in the COL3A1 gene, which encodes the con-
stituent chains of type III procollagen. We have identi-
fied, in 33 unrelated individuals or families with EDS
type IV, mutations that affect splicing, of which 30 are
point mutations at splice junctions and 3 are small de-
letions that remove splice-junction sequences and partial
exon sequences. Except for one point mutation at a do-
nor site, which leads to partial intron inclusion, and a
single base-pair substitution at an acceptor site, which
gives rise to inclusion of the complete upstream intron
into the mature mRNA, all mutations result in deletion
of a single exon as the only splice alteration. Of the exon-
skipping mutations that are due to single base substi-
tutions, which we have identified in 28 separate indi-
viduals, only two affect the splice-acceptor site. The
underrepresentation of splice acceptor–site mutations
suggests that the favored consequence of 3′ mutations is
the use of an alternative acceptor site that creates a null
allele with a premature-termination codon. The phe-
notypes of those mutations may differ, with respect to
either their severity or their symptomatic range, from
the usual presentation of EDS type IV and thus have
been excluded from analysis.

Introduction

Ehlers-Danlos syndrome (EDS) type IV is an uncommon
dominantly inherited disorder that is due to mutations
in the COL3A1 gene, which encodes type III procolla-
gen, and is characterized by a predilection for bowel and
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arterial rupture and occasionally is complicated by rup-
ture of the uterus during pregnancy. These complications
generally lead to a shortened life span (Steinmann et al.
1993).

The COL3A1 gene, located at 2q31-q32, contains 51
exons distributed over 44 kb (Chu and Prockop 1993).
The gene encodes a protein of 1,467 amino acids, of
which 1,029 are located within the core triple-helical
domain characterized by the presence of glycine in every
third position (Gly-X-Y, in which X and Y are any amino
acid other than tryptophan and in which cysteine is con-
fined to the last residue of the triple helix; Y is often
hydroxyproline). The triple-helical domain is encoded
by portions of 44 exons. Of these, 42 are cassettes that
begin with a glycine codon and end with a Y-position
codon, so that deletion of a single exon would result in
an in-frame but shortened protein. Because type III pro-
collagen is a homotrimer, the synthesis of an equal num-
ber of normal and abnormal chains results in production
of a 7:1 ratio of abnormal:normal molecules. If the mu-
tant COL3A1 allele results in an exon-skipping event,
the abnormal molecules contain one, two, or three short-
ened chains. The sites at which these alterations affect
molecular function include molecular folding, secretion,
and matrix formation (Smith et al. 1997).

EDS type IV has been proposed as a model for more-
common forms of arterial aneurysms, which often clus-
ter in families, but, to date, most studies have excluded
the COL3A1 gene as the locus for such mutations, in
the absence of some findings of EDS type IV (Kuivaniemi
et al. 1993; Tromp et al. 1993). In individuals with EDS
type IV, approximately one-third of published mutations
result in exon skipping, the majority of the remainder
lead to substitution for single glycine residues within the
triple-helical domain, and a small number are larger ge-
nomic deletions (Kuivaniemi et al. 1997). We have now
identified in 33 individuals mutations that affect splicing,
of which 30 are point mutations at splice junctions and
3 are small deletions that remove splice-junction se-
quences and partial exon sequences. Of the exon-skip-
ping mutations that are due to single base substitutions
and that we have identified in 28 separate individuals,
only 2 affect the splice-acceptor site. This strong bias
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Table 1

Clinical Summary of 33 Studied Individuals Affected with EDS Type IV

PATIENT

(SEX; AGE [YEARS]a) EXON

FAMILY

HISTORYb FACEc JOINTSd

SKIN BLOOD VESSELS COMPLICATIONS

CAUSE OF DEATH

(Age [Years])e

Thin/
Translucent

Cigarette-
Paper Scars

Bruising/
Bleeding

Venous
Varicosities Aneurysms

Arterial
Rupture

Bowel
Rupture

Spleen
Rupture Pneumothorax

91-364 (F; 25) 7 � � � � A (25)
92-075 (M; 23) 8 � � � � � � � �
94-597 (F; 21) 8 � � � �
96-302 (F; 32) 9 � � � � � �
86-053 (M; 10) 9 � � � �
94-341 (F; 45) 9 � � � � �
93-272 (M; 34) 14 � � � � � � � �
93-104 (F; 12) 14 � � � �
90-209 (M; 23) 17 � � � � � � A (24)
91-589 (F; 30) 18 � � � � � �
93-200 (F; 13) 18 � � � �
91-336 (M; 17) 22 � � � � � � � � �
94-190 (F; 6) 24 � � � � �
88-039 (F; 27) 24 � � � � � �
94-750 (M; 36) 24 � �
96-404 (F; 15) 24 � � � � � �
95-851 (M; 30) 27 � � � A (30)
96-474 (F; 4) 28 � �
95-563 (F; 25) 30 � � � � �
93-177 (F; 19) 34 � � � � � � � � A (20)
78-042 (M; 29) 34 � � � � � � � � A (32)
93-711 (F; 25) 37 � � � � � � A (25)
94-328 (F; 20) 38 � � � � �
93-344 (F; 13) 38 � � � � �
94-771 (M; 11) 41 � � � � �
94-326 (F; 3) 41 � � �
94-722 (M; 9) 42 � � �
93-487 (M; 30) 43 � � �
91-341 (M; 16) 43 � � � � � � �
78-000 (F) 45 � � A (41)
91-062 (M; 24) 45 � � � � � � �
92-011 (M; 20) 47 � � � �
95-229 (M; 13) 48 � � � � A (13)

NOTE.—A plus sign (�) denotes that the trait was present; and a minus sign (�) denotes that the trait was absent (a blank denotes that no information was available).
a Age shown is that when, on the basis of clinical grounds, diagnosis of EDS type IV was made.
b A plus sign (�) denotes that one parent (and other family members) were affected; and a minus sign (�) denotes that neither parent was affected.
c Characteristic facial features include a thin pinched nose, thin lips, prominent-appearing eyes, hollow cheeks, and tightness of the skin over the face.
d Mild hypermobility limited to the small joints of the hands and feet.
e A � aortic dissection or arterial rupture.
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toward the identification of 5′ splice-site mutations may
reflect different consequences of 3′ mutations that result
in less severe phenotypes, which may not be identified
in the clinical range of EDS type IV.

Subjects, Material, and Methods

Clinical Summary

Clinical features of the 33 unrelated index individuals
with EDS type IV who are reported in this study are
represented in table 1. The clinical diagnosis was con-
firmed by biochemical demonstration of defects in the
synthesis and secretion of type III procollagen. Of 28
index individuals for whom information on the parents
was available, 11 had a family history compatible with
the disease, and 17 were the first affected individuals in
their families.

In 13 individuals, the diagnosis was made in child-
hood or adolescence; 2 of them (86-053 and 93-104)
came to medical attention because of their positive fam-
ily history rather than because of symptoms character-
istic of EDS type IV. The other 11 individuals had a
history of severe bruising or bleeding tendency, and 6
of them had presented to the emergency room with spon-
taneous bowel rupture (93-344 [see Kinnane et al. 1995]
and 94-722), pneumothorax (96-404), or arterial rup-
ture (91-336, 91-341, and 95-229). One (95-229) suc-
cumbed to an arterial rupture at age 13 years.

Fifteen adults required hospitalization for major clin-
ical complications, and seven of them died from aortic
dissection or arterial rupture at 24–41 years of age. Clin-
ical findings in the affected daughter of patient 78 have
been described by Weinbaum et al. (1987), and the fam-
ily is included in the study of linkage of the COL3A1
gene to the EDS type IV phenotype and the potential
for prenatal diagnosis (Tsipouras et al. 1986).

Cell Culture and Analysis of Collagenous Proteins

Dermal fibroblasts were obtained from explants of
skin biopsies from the 33 index individuals, with ap-
propriate consent. Growth and maintenance of those
and control-cell strains, radiolabeling of collagenous
proteins, and analysis of proa chains and a chains by
SDS-PAGE were performed as described elsewhere (Bon-
adio et al. 1985).

Preparation of cDNA and Genomic DNA, and
Sequence Determination

Total cellular RNA was isolated from dermal fibro-
blasts of the probands (Chomczynski and Sacchi 1987),
and cDNA was synthesized by use of random hexamers
as primers for AMV-reverse transcriptase (Promega).
PCR (Saiki et al. 1988) was used to amplify 15 over-
lapping regions of cDNA (average size 456 nt [range

400–563 nt]), which covered the complete coding se-
quence of the proa1(III) chain. The sequences of the
oligonucleotides used as primers were derived from the
previously published cDNA sequence for COL3A1 (Ala-
Kokko et al. 1989; Benson-Chanda et al. 1989) and are
available on request from the authors. The amplified
cDNA fragments were separated on 6% polyacrylamide
gels. Prior to sequence determination by the dideoxy-
chain termination method (Sanger et al. 1977) using T7
polymerase (Sequenase version 2.0; US Biochemicals),
the PCR products were either purified on a 1% low-
melting-temperature agarose gel (NuSieve GTG agarose;
FMC) or were directly cloned into the PCR II vector,
according to instructions provided in the TA cloning kit
(Invitrogen). Genomic DNA was isolated from cultured
fibroblasts by standard methods (Sambrook et al. 1989).
The PCR was performed by use of 5′ and 3′ primers
located within the adjacent exons upstream and down-
stream to an exon deleted from the cDNA. Sequence
determination was accomplished as described above.
The sequencing primers were either identical to the am-
plification primers, or, if long introns surrounded the
deleted exon, nested primers derived from intron se-
quences were used.

Mutation Confirmation by Restriction Analysis

Digestion with restriction endonucleases (New Eng-
land BioLabs/Boehringer) of PCR fragments derived
from genomic DNA was performed to verify the pres-
ence of point mutations, which were predicted to create
or disrupt endonuclease cleavage sites. In some cases an
oligonucleotide that contained one mismatched nucle-
otide (mismatch primer) was used to introduce an en-
donuclease-restriction site during PCR.

Results

Characterization of mRNA Alterations Encoding
Mutant Proa1 Chains of Type III Procollagen

To determine the structure of the mRNAs that en-
coded the proa1(III) chains of type III procollagen in
cells from 33 individuals with EDS type IV, the COL3A1
mRNA was reverse transcribed, and the product was
amplified in overlapping fragments. After separation by
PAGE, control cDNA yielded one normal-size fragment
per amplification, whereas in 31 patients one cDNA re-
gion was detected from which one normal and a second,
faster-migrating fragment were derived in equal
amounts, consistent with heterozygosity for a small de-
letion (fig. 1). The boundaries of the deletions were iden-
tified by DNA sequence determination, and in each in-
stance the faster-migrating fragment lacked a nucleotide
sequence that corresponded precisely to the sequence of
a single exon within the triple-helical domain. Exons 9
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Figure 1 COL3A1 reverse-transcriptase–PCR products from an
unaffected individual (lanes C) and four patients (lanes P) with EDS
type IV and exon-skipping mutations. Exon 17 � 99 bp (patient 90-
209), exon 27 � 54 bp (patient 95-851), exon 30 � 45 bp (patient
95-563), and exon 37 � 108 bp (patient 93-711). The arrows on the
right indicate the positions of heteroduplexes. Molecular-weight
marker � �DNA # PstI.

and 24 were found to be deleted in three and four un-
related patients or families, respectively. Sequences en-
coded by exons 8, 14, 18, 34, 38, 41, 43, and 45 were
each deleted in two unrelated patients or families,
whereas those of exons 7, 17, 22, 27, 28, 30, 37, and
47 were each identified in one patient or family (fig. 2A).
The translational reading frame of the mRNA was main-
tained, and the carboxyl-terminal propeptide of the
proa1(III) chain was left intact, to facilitate molecular
assembly. Of these mutations, deletion of exons 8, 9,
18, 28, 30, 38, and 47 had not been identified previously
(fig. 2B).

With the two remaining patients, amplification of two
different cDNA regions yielded one normal-size frag-
ment and a second fragment of slower mobility, in equal
amount, consistent with heterozygosity for a small in-
sertion (fig. 3). Sequence determination of the abnormal
fragment from the first patient (94-722) revealed an in-
clusion of the first 30 bp of intron 42. In the second
patient (95-229), a 96-bp sequence was included in the
mRNA between exons 47 and 48. In each case the trans-
lational reading frame was maintained, but the Gly-X-
Y pattern of the triple helix was interrupted.

Identification of COL3A1 Mutations Resulting in Exon
Deletions

To characterize the defect at the gene level and thereby
to elucidate the cause of the exon-deletion events,
COL3A1 genomic DNA was amplified to include the
exon missing from the cDNA. In all but three patients
(93-104, 91-336, and 91-589), amplification yielded a

single PCR product, which suggested that the mRNA
deletion was caused by defective splicing of pre-mRNA.
Direct sequence determination disclosed single base
changes in all 28 patients whose DNA yielded a single
band (fig. 2A). All but two point mutations identified in
the present study (i.e., 26 of 28) caused disruption of
the 5′ (donor) splice site. The G nucleotide at position
�1 of the consensus sequence (Krawczak et al. 1992)
was changed most frequently, with a predominance of
transition mutations. The T nucleotide at position �2
and the G nucleotide at position �5 were changed at
approximately equal frequency, with a slight prepon-
derance of transition mutations over transversions. Mu-
tations at positions �1 (the last position of the exon)
and �3 were found in one patient each, and none was
found at the fourth or sixth position. The two examples
of mutations that disrupted the 3′ (acceptor) splice site
were a GrC substitution at position �1 of intron 17
(93–200) and an ArC substitution at position �2 of
intron 46 (92–011) (fig. 2A). The same IVS24G�1rA
mutation was identified in four unrelated families and
had been identified previously in an additional family
(Pope et al. 1996). The mutation affects a CpG site, as
does the recurrent IVS20G�1rA identified by others
(Kontusaari et al. 1990; Anderson et al. 1993). Three
other mutations in this collection have also been iden-
tified in other families, IVS37T�2rC (Richards et al.
1994), the recurrent IVS41G�1rA (Cole et al. 1990),
and IVS45G�1rA (Pope et al. 1996).

COL3A1 genomic-amplification products from the
three remaining patients exhibited, in addition to the
normal-size fragment, a second, shorter fragment in pa-
tients 93-104 and 91-336 and a longer fragment in pa-
tient 91-589. The nucleotide sequences from the
fragments of altered size are depicted in figure 4. A 15-
bp deletion in patient 93-104 (fig. 4A) removed the 5′

(donor) splice site of intron 14. The exact position of
the genomic deletion could not be determined, because
there was a 5-bp direct repeat that flanked the deleted
sequence. There was a 57-bp genomic sequence deleted
in patient 91-336 (fig. 4B), which obliterated the 3′ (ac-
ceptor) splice site of intron 21 and led to skipping of
exon 22. A third patient (91-589; fig. 4C) had a complex
deletion/insertion event that eliminated the 3′ (acceptor)
splice site of intron 17 and resulted in skipping of exon
18. In this case, one 5-bp (cctgg) and one 6-bp (gtatac)
direct repeat was found at multiple sites in the deleted/
inserted sequence and in the flanking unaltered sequence.

Identification of COL3A1 Mutations Leading to
Inclusion of Intron Sequence in mRNA

To identify, at the gene level, the defect that led to
partial or complete intron retention, COL3A1 genomic
DNA was amplified to include the retained intron and
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Figure 2 Point mutations at splice sites in COL3A1, resulting in exon deletions (A) identified in the present study and (B) reported in
the literature. Subscript numerals in the splice-site consensus sequences refer to percentage frequency of occurrence. The consensus sequences
in vertebrate genes have been reported by Padgett et al. (1986), and the COL3A1-specific consensus sequences are derived from characterized
splice junctions of 20 exons. Exon sequences are signified by capital letters, and intron sequences are signified by lowercase letters; nucleotides
at the site of mutation are signified by boldface lowercase letters.

the adjacent exons. In patient 94-722 sequence analysis
revealed a GrA transition at the �1 position of the 5′

(donor) splice site of intron 42, which resulted in read-
through to a cryptic donor site 30 nt downstream (AG/
GTAGAA, where “/” denotes the site of cleavage). The
same mutation, identified in an unrelated individual, had
been reported previously (Kuivaniemi et al. 1990). In
patient 95-229 the entire intron 47 (96 nt) was retained
in the mRNA after an ArT transversion at the �2 po-
sition of the 3′ (acceptor) splice site (tagrttg) of intron
47 (fig. 5). The mutation converted the termination co-
don (tag), which is part of the acceptor site, to a codon
for leucine (ttg). The steady-state amount of the in-frame
read-through transcript was not diminished, and the

normal:intron-inclusion product ratio was ∼1:1 in the
PCR-amplified cDNA (fig. 3).

Analysis of Type III Collagen Production by Patients’
Cultured Fibroblasts

Radiolabeled procollagens from the medium and the
fibroblast cell layer were analyzed by SDS-PAGE—first,
after addition of a reducing agent and, second, under
nonreducing conditions after partial digestion with pep-
sin to remove the precursor-specific peptides at both ends
of the triple-helical domain. The amount of type III pro-
collagen secreted into the medium was diminished for
all cell strains, but the electrophoretic mobility of the
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Figure 3 COL3A1 reverse-transcriptase–PCR products from an
unaffected individual (lanes C) and two patients (lanes P), with inclu-
sion, in the mRNA, of either the first 30 bp of intron 42 (patient 94-
722) or the entire 96-bp intron 47 (patient 95-229). The arrows on
the right indicate the positions of heteroduplexes. Molecular-weight
marker � �DNA # PstI.

constituent chains was heterogeneous (fig. 6). In some
cell strains, chains migrated slightly faster than normal,
resulting in a less-sharp separation between the
proa1(III) and proa1(I) chains (fig. 6). There was an
increase in the amount of proa1(III) molecules retained
intracellularly, with increasing delay of the electrophor-
etic mobility, the further C-terminal the exon deletion
occurred (fig. 6).

Discussion

The accuracy of the cleavage and ligation reactions
by which introns are removed from precursor mRNA
depends on the interaction between consensus sequences
located at each end of the introns, small nuclear ribo-
nucleoproteins, and other protein-splicing factors (e.g.,
U2AF, PTB, ASF/SF2, and SC35 [Singh et al. 1995; Val-
cárcel et al. 1996; Wang et al. 1996; MacMillan et al.
1997]). When other aspects of the splicing machinery
are normal, the efficiency of splicing is influenced not
only by the conserved sequence elements at the 5′ (donor)
and 3′ (acceptor) sites in the introns but by the length
and sequence of introns (Sirand-Pugnet et al. 1995; Co-
gan et al. 1996), the length and sequence of adjacent
exons (Sterner and Berget 1993; Peterson et al. 1994;
van Oers et al. 1994; Del Gatto et al. 1996), and RNA
secondary structure (Estes et al. 1992).

With the mutations that we and others have now re-
ported, within the consensus acceptor and donor sites
of the COL3A1 gene, point mutations have been iden-

tified, that lead to exon skipping in 43 individuals or
families (fig. 2A and B). Of these mutations, all but three
are in the 5′ donor sequences. If a target size of 6 bp for
the 5′ site (consensus sequence gtaagt) and 3 bp for the
3′ site (consensus sequence c/tag) is assumed (Krawczak
et al. 1992), then the expected distribution of this num-
ber of mutations would be closer to a 2:1 ratio than is
the 13:1 ratio that is observed. In the COL1A1 and
COL1A2 genes, splice-site mutations that result in exon
skipping in forms of osteogenesis imperfecta and EDS
type VII are distributed in a pattern that more closely
approximates the expected ratio (Kuivaniemi et al. 1997;
Byers et al. 1997). The reason for the skewed pattern
of observed mutations at splice sites in the COL3A1
gene is not clear, but at least two explanations seem
possible.

One explanation is that the phenotypes associated
with 3′ splice-site mutations may differ from the usual
presentation of EDS type IV, which has been the means
by which the individuals studied by us and by others
have been ascertained. A second possibility is that the
favored result of 3′ splice-site mutations is creation of a
null allele but that the ability to discern a heterozygous
null by protein assays is limited, so that we might not
have studied the cells.

The molecular consequences of 5′ splice-site mutations
depend largely on the position of the mutation in the
consensus sequence and on the length of the downstream
intron. The three major consequences of 5′ splice-site
mutations are expected to be (1) skipping of the entire
preceding exon, (2) read-through of the intron, with in-
tron inclusion in the mature mRNA, and (3) use of cryp-
tic donor sites either in the preceding exon or down-
stream in the intron. In the COL3A1 gene, exon
skipping within the triple-helical domain results in an
in-frame mRNA, because of the cassette structure of the
exons (each starts with an intact glycine codon and ends
with an intact Y-position codon). These mRNA species
would be expected to have normal stability.

Intron inclusion may be favored if the size of the in-
tron does not yield a redefined exon 1300 bp (Roberson
et al. 1990). For example, with an intron 20 G�1rA
transition, intron 20 is retained in a third of the mutant
transcripts that are detectable in total RNA at steady
state (Kuivaniemi et al. 1990). Most introns in the
COL3A1 gene that have been characterized are 1300
bp. Thus, of the remaining mutations that we and others
have identified, only the disruption of the 5′ (donor)
splice site of intron 34 might have led to inclusion of a
the complete downstream 85-nt intron. The product of
this alternative would contain a stop codon, and thus
the mRNA would most likely be unstable or not trans-
ported efficiently from the nucleus (Stover et al. 1993;
Maquat 1995, 1996; Redford-Badwal et al. 1996). This
alternative does not appear to be used, since the normal:
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Figure 4 Schematic representation of two small genomic deletions (A and B [patients 93-104 and 91-336, respectively]) and one complex
deletion/insertion event (C [patient 91-589]) in COL3A1, leading to exon skips. Exons are represented as boxes (not drawn to scale), and intron
sequences are signified by lowercase letters; one short direct repeat in A and two different short repeats in C are underlined.

exon-skipped product ratio is ∼1:1 in the PCR-amplified
cDNA. All other introns in the COL3A1 gene in which
we and others have identified 5′ splice-site mutations
would lead to redefined exons 1300 nt, so that skipping
would probably be favored.

Of the reported mutations, only three appear to use
cryptic splice sites either within the intron or within the
preceding exon (Kuivaniemi et al. 1990). The G�1rA
mutations in these introns lead to alternative splicing in
which exon skipping is one of the possible outcomes.
With the mutation in the 421-bp intron 16, skipping is
the major product, and insertion of 24 nt is a minor
product. With the mutation in the smaller, 132-bp intron
20, both a 24-nt insertion and insertion of the whole
intron constitute significant products, and exon skipping
is a minor outcome. With mutations in the large intron
42 (753 bp), the only splicing product results in read-
through to a cryptic donor site 30 nt downstream, an
observation that we also made in one unrelated patient
(94-722) in our study.

With 3′ splice-site mutations, the several alternatives

include exon skipping and the use of alternative acceptor
sites within the intron or the succeeding exon (most com-
mon). Exon skipping would lead to a stable product, as
exemplified by the mutations that we identified, in in-
trons 17 and 46, that led to skipping of exons 18 and
47, respectively. We examined the sequences of exons
6–49, to identify potential splice-acceptor sites (c/tag se-
quences). When we assumed 12 bp as a minimal exon
size (Hawkins 1988; Berget 1995), we found 84 poten-
tial sites, of which 76 would result in out-of-frame
mRNA sequences that we would expect to be unstable
or to be retained within the nucleus (Maquat 1995,
1996; Stover et al. 1993). This suggests that many 3′

splice-site mutations could give rise to “null” alleles of
COL3A1, because the mRNA product contains a pre-
mature-termination codon that is succeeded by at least
one intron and is thus subject to nonsense-mediated de-
cay (Carter et al. 1996).

It is clear that cells from all individuals so far identified
with the EDS type IV phenotype produce an abnormal
type III procollagen protein. We are uncertain of the
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Figure 5 Schematic depiction of a point mutation (IVS47 A�2rT), at the 3′ (acceptor) splice site of intron 47, that changes a termination
codon (TAG) to a codon for leucine (TTG) and results in retention of intron 47 (96 nt) in the mature transcript (patient 95-229).

Figure 6 SDS-PAGE of radiolabeled procollagens from medium (top) and fibroblast cell layer (bottom), analyzed under reducing conditions.
The first and the last lane show a control cell line (C), and the lanes in between them show cell lines of 18 patients with EDS type IV and are
arranged according to the relative position of the exon deletion along the COL3A1 gene, with the N-terminus leftmost. FN � fibronectin.

expected phenotype for COL3A1 null alleles. Two large
studies of individuals with cerebral aneurysms (Kuivan-
iemi et al. 1993) and abdominal aortic aneurysms
(Tromp et al. 1993) make it unlikely that COL3A1 null
alleles are the usual causes of those conditions, inasmuch
as the majority of the people studied had evidence of
expression of both COL3A1 alleles. Heterozygous mice
with a COL3A1 null allele generated by targeted gene
inactivation were phenotypically normal (Liu et al.
1997). However, late onset of signs might be missed by
a short follow-up period. Null alleles of the COL1A1
gene result in the mildest form of osteogenesis imper-
fecta, and in these individuals the mutations have been
shown to be (i) point mutations that alter 5′ (donor)
splice sites and lead to intron inclusion or the use of
cryptic sites that are out of frame and encode down-
stream termination codons; (ii) small deletions or inser-

tions within exons, which cause translational frameshifts
and new termination codons downstream; and (iii) point
mutations that create a premature-termination codon
(Stover et al. 1993; Willing et al. 1994, 1996). Given
this, milder or late-onset vascular involvement may yet
be a candidate phenotype for the COL3A1 null-allele
genotype.

In the present study we have shown that a point mu-
tation in the 3′ splice site can result in the inclusion of
the complete upstream intron. This appears to be a rare
event with human mutations. An ArT transversion at
the �2 position of the 3′ splice site of intron 47 (in
patient 95-229) results in retention, in the mature tran-
script, of the 96-nt intron 47, in which an in-frame ter-
mination codon embedded in the site is changed to a
leucine codon. It is the only splice outcome (fig. 5). Since
the length of the retained intron is a multiple of three,
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and since the mutation converts the only termination
codon (also part of the 3′ splice site) in that sequence to
a codon for leucine, the reading frame remains uninter-
rupted and thus is probably normally translated. The
repeating amino acid sequence (Gly-X-Y)n of the col-
lagen triple helix is abolished in the area of the insertion,
so this chain would severely disrupt the helical structure
and result in a nonfunctional protein. Furthermore, there
would be none of the fully helical shorter molecules that
are seen in exon-skipping mutations.

The other 3′ splice-site mutation that we identified,
IVS17G�1rC, and the previously described
IVS13A�2rC (Pope et al. 1996) both convert the non-
sense “codon” TAG of the acceptor sequence to sense
“codons.” In both instances the intron of which they
are part contains stop codons, and intron 17 is large, so
that the opportunity for read-through is absent.

In three individuals, elimination of a splice junction,
by small genomic deletions or a complex deletion/inser-
tion event (fig. 4), explained a single exon deletion. The
15-bp deletion that removed the 5′ (donor) splice site of
intron 14 involved a 5-bp flanking direct repeat, con-
sistent with deletion by “slipped mispairing” during
DNA replication (Efstratiadis et al. 1980). The mecha-
nism for a 57-bp deletion by which the 3′ (acceptor)
splice site of intron 21 was removed is not clear. There
is no flanking direct repeat or inverted repeat that could
allow the formation of a stem-loop structure during rep-
lication and lead to excision by DNA repair enzymes.
In a third individual with an exon 18 skip, the genomic
defect was an 18-bp deletion/41-bp insertion that oblit-
erated the 3′ (acceptor) splice site of intron 17. The it-
erative occurrence of short sequence stretches in the in-
serted sequence that were originally located within and
adjacent to the deleted 18 bp is consistent with “stutter”
of the DNA polymerase.

Type III collagen is a component of the extracellular
matrix of many tissues and is particularly abundant in
skin, blood vessels, and hollow organs, which bear the
brunt of mutations in the COL3A1 gene. Ultrastructural
analyses of various tissues derived from Col3a1�/� mu-
tant mice, which exhibit features closely resembling the
phenotype of EDS type IV in humans, showed both a
marked reduction of the number of collagen fibrils and
a significant increase in the mean diameter of highly
variable and disorganized type I collagen fibrils, which
implies a critical role for type III collagen in determining
the size and structure of these fibrils (Liu et al. 1997).
In the presence of mutations, the size of fibrils changes
to reflect the location of the mutation along the chain
(Smith et al. 1997). Because collagen is a linear, ropelike
molecule, it might be expected that mutations along the
gene (with consequences along the protein) might have
different phenotypic outcomes. On the basis of the data
that we have collected on these families, we were unable

to determine a precise phenotype/genotype correlation.
That is, bowel rupture and arterial rupture appeared to
be as common among families in which the mutations
were in the 3′ end of the coding region as they were
among those families with mutations in the 5′ end of the
region encoding the triple helix. The most likely expla-
nation for our failure to find correlation of mutation
position and phenotype is that the criteria for inclusion
in the study group require that most of the phenotypic
consequences be met in one or more affected individuals.
Thus the range of phenotypic variation is likely to be
small and may be limited to minor features, such as
acrogeria. An alternative explanation is that only the
normal homotrimers and abnormal homotrimers (in
which all three chains have deleted an exon) are effi-
ciently secreted, so that the major matrix molecule pop-
ulation with all exon-skipping mutations is similar.
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